Four Vendor Views on Big Data and Big Data Analytics: IBM

Next in my discussion of big data providers is IBM.   Big data plays right into IBM’s portfolio of solutions in the information management space.  It also dove tails very nicely with the company’s Smarter Planet strategy.  Smarter Planet holds the vision of the world as a more interconnected, instrumented, and intelligent place.  IBM’s Smarter Cities and Smarter Industries are all part of its solutions portfolio.  For companies to be successful in this type of environment requires a new emphasis on big data and big data analytics.

Here’s a quick look at how IBM is positioning around big data, some of its product offerings, and use cases for big data analytics.

IBM

According to IBM, big data has three characteristics.  These are volume, velocity, and variety.   IBM is talking about large volumes of both structured and unstructured data.  This can include audio and video together with text and traditional structured data.  It can be gathered and analyzed in real time.

IBM has both hardware and software products to support both big data and big data analytics.  These products include:

  • Infosphere Streams – a platform that can be used to perform deep analysis of massive volumes of relational and non-relational data types with sub-millisecond response times.   Cognos Real-time Monitoring can also be used with Infosphere Streams for dashboarding capabilities.
  • Infosphere BigInsights – a product that consists of IBM research technologies on top of open source Apache Hadoop.  BigInsights provides core installation, development tools, web-based UIs, connectors for integration, integrated text analytics, and BigSheets for end-user visualization.
  • IBM Netezza – a high capacity appliance that allows companies to analyze pedabytes of data in minutes.
  • Cognos Consumer Insights- Leverages BigInsights and text analytics capabilities to perform social media sentiment analysis.
  • IBM SPSS- IBM’s predictive and advanced analytics platform that can read data from various data sources such as Netezza and be integrated with Infosphere Streams to perform advanced analysis.
  • IBM Content Analytics – uses text analytics to analyze unstructured data.  This can sit on top of Infosphere BigInsights.

At the Information on Demand (IOD) conference a few months ago, IBM and its customers presented many use cases around big data and big data analytics. Here is what some of the early adopters are doing:

  • Engineering:  Analyzing hourly wind data, radiation, heat and 78 other attributes to determine where to locate the next wind power plant.
  • Business:
    • Analyzing social media data, for example to understand what fans are saying about a sports game in real time.
    • Analyzing customer activity at a zoo to understand guest spending habits, likes and dislikes.
  • Analyzing healthcare data:
    • Analyzing streams of data from medical devices in neonatal units.
    •  Healthcare Predictive Analytics.  One hospital is using a product called Content and Predictive analytics to understand limit early hospital discharges which would result in re-admittance to the hospital

IBM is working with its clients and prospects to implement big data initiatives.  These initiatives generally involve a services component given the range of product offerings IBM has in the space and the newness of the market.  IBM is making significant investments in tools, integrated analytic accelerators, and solution accelerators to reduce deployment time and cost to deploy these kinds of solutions.

At IBM, big data is about the “the art of the possible.”   According to the company, price points on products that may have been too expensive five years ago are coming down.  IBM is a good example of a vendor that is both working with customers to push the envelope in terms of what is possible with big data and, at the same time, educating the market about big data.   The company believes that big data can change the way companies do business.  It’s still early in the game, but IBM has a well-articulated vision around big data.  And, the solutions its clients discussed were big, bold, and very exciting.  The company is certainly a leader in this space.

Four Vendor Views on Big Data and Big Data Analytics Part 2- SAS

Next up in my discussion on big data providers is SAS.  What’s interesting about SAS is that, in many ways, big data analytics is really just an evolution for the company.  One of the company’s goals has always been to support complex analytical problem solving.  It is well respected by its customers for its ability to analyze data at scale.  It is also well regarded for its ETL capabilities.  SAS has had parallel processing capabilities for quite some time.  Recently, the company has been pushing analytics into databases and appliances.  So, in many ways big data is an extension of what SAS has been doing for quite a while.

At SAS, big data goes hand in hand with big data analytics.  The company is focused on analyzing big data to make decisions.  SAS defines big data as follows, “When volume, velocity and variety of data exceeds an organization’s storage or compute capacity for accurate and timely decision-making.”   However, SAS also includes another attribute when discussing big data which is relevance in terms of analysis.  In other words, big data analytics is not simply about analyzing large volumes of disparate data types in real time.  It is also about helping companies to analyze relevant data.

SAS can support several different big data analytics scenarios.  It can deal with complete datasets.   It can also deal with situations where it is not technically feasible to utilize an entire big data set or where the entire set is not relevant to the analysis.  In fact, SAS supports what it terms a “stream it, store it, score it” paradigm to deal with big data relevance.   It likens this to an email spam filter that determines what emails are relevant for a person.  Only appropriate emails go to the person to be read.  Likewise, only relevant data for a particular kind of analysis might be analyzed using SAS statistical and data mining technologies.

The specific solutions that support the “stream it, store it, score it” model include:

  • Data reduction of very large data volumes using stream processing.  This occurs at the data preparation stage.  SAS Information Management capabilities are leveraged to interface with various data sources that can be streamed into the platform and filtered based on analytical models built from what it terms “organizational knowledge” using products like SAS Enterprise Miner, SAS Text Miner and SAS Social Network Analytics. SAS Information Management (SAS DI Studio, DI Server, which includes DataFlux capabilities) provides the high speed filtering and data enrichment (with additional meta-data that is used to build more indices that makes the downstream analytics process more efficient).  In other words, it utilizes analytics and data management to prioritize, categorize, and normalize data while it is determining relevance.  This means that massive amounts of data does not have to be stored in an appliance or data warehouse.
  • SAS High Performance Computing (HPC). SAS HPC includes a combination of grid, in-memory and in-database technologies. It is appliance ready software built on specifically configured hardware from SAS database partners.  In addition to the technology, SAS provides pre-packaged solutions that are using the in-memory architecture approach.
  • SAS Business Analytics.  SAS offerings include a combination of reporting, BI, and other advanced analytics functionality (including text analytics, forecasting, operations research, model management and deployment) using some of the same tools (SAS Enterprise Miner, etc) as listed above.  SAS also includes support for mobile devices.

Of course, this same set of products can be used to handle a complete data set.

Additionally, SAS supports a Hadoop implementation to enable its customers to push data into Hadoop and be able to manage it.  SAS analytics software can be used to run against Hadoop for analysis.  The company is working to utilize SAS within Hadoop so that data does not have to be brought out to SAS software.

SAS has utilized its software to help clients solve big data problems in a number of areas including:

  • Retail:  Analyzing data in real time at check-out to determine store coupons at big box stores; Markdown optimization at point of sale; Assortment planning
  • Finance: Scoring transactional data in real time for credit card fraud prevention and detection; Risk modeling: e.g. moving from looking at loan risk modeling as one single model to  running multiple models against a complete data set that is segmented.
  • Customer Intelligence: using social media information and social network analysis

For example, one large U.S. insurance company is scoring over 600,000 records per second on a multi node parallel set of processors.

What is a differentiator about the SAS approach is that since the company has been growing its big data capabilities through time, all of the technologies are delivered or supported based on a common framework or platform.  While newer vendors may try to down play SAS by saying that its technology has been around for thirty years, why is that a bad thing?  This has given the company time to grow its analytics arsenal and to put together a cohesive solution that is architected so that the piece parts can work together.  Some of the newer big data analytics vendors don’t have nearly the analytics capability of SAS.   Experience matters.  Enough said for now.

Next Up:  IBM
Follow

Get every new post delivered to your Inbox.

Join 1,189 other followers