3 Takeaways from the IBM Big Data Event

Last week I attended the IBM Big Data at the Speed of Business event at IBM’s Research facility in Almaden.  At this analyst event IBM announced multiple capabilities around its big data initiative including its new BLU Acceleration and IBM PureData System for Hadoop.  Additionally, new versions of Infosphere Big Insights and Infosphere Streams (for data streams) were announced as enhancements to IBM’s Big Data Platform.  A new version of Informix that includes time series acceleration was also announced.

The overall goal of these products is to make big data more consumable –i.e. to make it simple to manage and analyze big data.  For example, IBM PureData System for Hadoop is basically Hadoop as an appliance, making it easier to stand up and deploy.  Executives at the event said that a recent customer had gotten its PureData System “loading and interrogating data 89 minutes.”  The solution comes packaged with analytics and visualization technology too.  BLU Acceleration combines a number of technologies including dynamic in-memory processing and active compression to make it 8-25x faster for reporting and analytics.

For me, some of the most interesting presentations focused on big data analytics.  These included emerging patterns for big data analytics deployments, dealing with time series data, and the notion of the contextual enterprise.

Big data analytics use cases.  IBM has identified five big data use cases from studying hundreds of engagements it has done across 15 different industries.   These high value use cases include:

  • 360 degree view of a customer- utilizing data from internal and external sources such as social chatter to understand behavior and “seminal psychometric markers” to gain insight into customer interactions.
  • Security/Intelligence- utilizing data from sources like GPS devices and RFID tags and consuming it at a rate to protect individual safety from fraud or cyber attack.

For more visit my tdwi blog

Two Weeks and Counting to Big Data for Dummies

I am excited to announce I’m a co-author of Big Data for Dummies which will be released in mid-April 2013.  Here’s the synopsis from Wiley:

Find the right big data solution for your business or organization

Big data management is one of the major challenges facing business, industry, and not-for-profit organizations. Data sets such as customer transactions for a mega-retailer, weather patterns monitored by meteorologists, or social network activity can quickly outpace the capacity of traditional data management tools. If you need to develop or manage big data solutions, you’ll appreciate how these four experts define, explain, and guide you through this new and often confusing concept. You’ll learn what it is, why it matters, and how to choose and implement solutions that work.

  • Effectively managing big data is an issue of growing importance to businesses, not-for-profit organizations, government, and IT professionals
  • Authors are experts in information management, big data, and a variety of solutions
  • Explains big data in detail and discusses how to select and implement a solution, security concerns to consider, data storage and presentation issues, analytics, and much more
  • Provides essential information in a no-nonsense, easy-to-understand style that is empowering

 

Big Data For Dummies cuts through the confusion and helps you take charge of big data solutions for your organization.

Five Best Practices for Text Analytics

It’s been a while since I updated my blog and a lot has changed.  In January, I made the move to TDWI as Research Director for Advanced Analytics.  I’m excited to be there, although I miss Hurwitz & Associates.   One of the last projects I worked on while at Hurwitz & Associates was the Victory Index for Text Analytics.  Click here for more information on the Victory Index.  

As part of my research for the Victory Index, I spent I a lot of time talking to companies about how they’re using text analytics.  By far, one of the biggest use cases for text analytics centers on understanding customer feedback and behavior.  Some companies are using internal data such as call center notes or emails or survey verbatim to gather feedback and understand behavior, others are using social media, and still others are using both.  

What are these end users saying about how to be successful with text analytics?  Aside from the important best practices around defining the right problem, getting the right people, and dealing with infrastructure issues, I’ve also heard the following:

Best Practice #1 - Managing expectations among senior leadership.   A number of the end-users I speak with say that their management often thinks that text analytics will work almost out of the box and this can establish unrealistic expectations. Some of these executives seem to envision a big funnel where reams of unstructured text enter and concepts, themes, entities, and insights pop out at the other end.  Managing expectations is a balancing act.  On the one hand, executive management may not want to hear the details about how long it is going to take you to build a taxonomy or integrate data.  On the other hand, it is important to get wins under your belt quickly to establish credibility in the technology because no one wants to wait years to see some results.  That said, it is still important to establish a reasonable set of goals and prioritize them and to communicate them to everyone.  End users find that getting senior management involved and keeping them informed with well-defined plans on a realistic first project can be very helpful in handling expectations. 

 

for more visit my tdwi blog

 

 

Five Challenges for Text Analytics

While text analytics is considered a “must have” technology by the majority of companies that use it, challenges abound.  So I’ve learned from the many companies I’ve talked to as I prepare Hurwitz & Associates’ Victory Index for Text Analytics,a tool that assesses not just the technical capability of the technology but its ability to provide tangible value to the business (look for the results of the Victory Index in about a month). Here are the top five: http://bit.ly/Tuk8DB.  Interestingly, most of them have nothing to do with the technology itself.

Hadoop + MapReduce + SQL + Big Data and Analytics: RainStor

As the volume and variety of data continues to increase, we’re going to see more companies entering the market with solutions to address big data and compliant retention and business analytics.  One such company is RainStor, which while not a new entrant (with over 150 end-customers through direct sales and partner channels) has recently started to market its big data capabilities more aggressively to enterprises.  I had an interesting conversation with Ramon Chen, VP of product management at RainStor, the other week.   

The RainStor database was built in the UK as a government defense project to process large amounts of data in-memory.  Many of the in-memory features have been retained while new capabilities including persistent retention on any physical storage have been added. And now the company is positioning itself as providing an enterprise database architected for big data. It even runs natively on Hadoop.

The Value Proposition

The value proposition is that Rainstor’s technology enables companies to store data in the RainStor database using a unique compression technology to reduce disk space requirements.  The company boasts as much as a 40 to 1 compression ratio (>97% reduction in size).  Additionally, the software can run on any commodity hardware and storage. 

For example, one of RainStor’s clients generates 17B logs a day that it is required to store and access for ninety days.  This is the equivalent of 2 petabytes (PB) of raw information over that period which would ordinarily cost millions of dollars to store. Using RainStor, the company compressed and retained the data 20 fold in a cost-efficient 100 Terabyte (TB) NAS. At the same time RainStor also replaced an Oracle Data Warehouse providing fast response times to meet queries in support of an operational call center.

RainStor ingests the data, stores it, and makes it available for query and other analytic workloads.  It comes in two editions – the Big Data Retention Edition and the Big Data Analytics on Hadoop edition.  Both editions  provide full SQL-92 and ODBC/JDBC access.  According to the company, the Hadoop edition is the only database that runs natively on Hadoop and supports access through MapReduce and the PIG Latin language. As a massively parallel processing (MPP) database RainStor runs on the same Hadoop nodes, writing and supporting access to compressed data on HDFS. It provides security, high availability, and lifecycle management and versioning capabilities.

The idea then is that RainStor can dramatically lower the cost of storing data in Hadoop through its compression which reduces the node count needed and accelerates the performance of MapReduce jobs and provides full SQL-92 access. This can reduce the need to transfer data out of the Hadoop cluster to a separate enterprise data warehouse.  RainStor allows the Hadoop environment to support real-time query access in addition to its batch-oriented MapReduce processing.

How does it work?

RainStor is not a relational database; instead it follows the NoSQL movement by storing data non-relationally.  In its case the data is physically stored as a set of trees with linked values and nodes.  The idea is illustrated below (source: RainStor) 

Image

Say a number of records with common value yahoo.com are ingested in the system.  Rainstor would throw away duplicates and only store the literal yahoo.com once but maintain references to the records that contained that value.  So, if the system is loading 1 million records and 500K contained yahoo.com it would only be stored once, saving significant storage.  This and additional pattern deduplication means that a resulting tree structure holds the same data in a significantly smaller footprint and higher compression ratio compared to other databases on the market, according to RainStor.  It also doesn’t require re-inflation like binary zip file compression which requires resources and time to re-inflate.  It writes the tree structure as is to disk, when you read it reads it back to disk.  Instead of unraveling all trees all the time, it only reads those relevant trees and branches of trees that are required to fulfill the query.  

Conclusion

RainStor is a good example of a kind of database that can enable big data analytics.  Just as many companies finally “got” the notion of business analytics and the importance of analytics in decision making so too are they realizing that as they accumulate and generate ever increasing amounts of data there is opportunity to analyze and act on it.

For example, according to the company, you can put a BI solution, like IBM Cognos, Microstrategy, Tableau or SAS, on top of RainStor.  RainStor would hold the raw data and any BI solution would access data either through MapReduce or ODBC/JDBC  (i.e. one platform) with no need to use Hive and HQL.  RainStor also recently announced a partnership with IBM BigInsights for its Big Data Analytics on Hadoop edition. 

What about big data appliances that are architected for high performance analytics?  RainStor claims that while some big data appliances  do have some MapReduce support (like Aster Data for example) it would be cheaper to use their solution together with open source Hadoop.  In other words, RainStor on Hadoop would be cheaper than any big data appliance.

It is still early in the game.  I am looking forward to seeing some big data analytics implementations which utilize RainStor.  I am interested to see use cases that go past querying huge amounts of data and provide some advanced analytics on top of RainStor.  Or, big data visualizations with rapid response time on top of RainStor, that only need to utilize a small number of nodes.  Please keep me posted, RainStor.

Five reasons to use text analytics

I just started writing a blog for AllAnalytics, focusing on advanced analytics.  My first posting outlines five use cases for text analytics.  These include voice of the customer, fraud, warranty analysis, lead generation, and customer service routing.  Check it out. 

Of course there are many more use cases for text analytics.  On the horizontal solutions front these include enhancing search, survey analysis and eDiscovery.  The list is huge on the vertical side including medical analysis, other scientific research, government intelligence,  and the list goes on.

If you want to learn more about text analytics, please join me for my webinar on Best Practices for Text Analytics this Thursday, April 29th,  at 2pm ET.  You can register here

Are you ready for IBM Watson?

This week marks the one year anniversary of the IBM Watson computer system succeeding at Jeopardy!. Since then, IBM has gotten a lot of interest in Watson.  Companies want one of those.

But what exactly is Watson and what makes it unique?  What does it mean to have a Watson?  And, how is commercial Watson different from Jeopardy Watson?

What is Watson and why is it unique?

Watson is a new class of analytic solution

Watson is a set of technologies that processes and analyzes massive amounts of both structured and unstructured data in a unique way.   One statistic given at the recent IOD conference is that Watson can process and analyze information from 200 million books in three seconds.  While Watson is very advanced it uses technologies that are commercially available with some “secret sauce” technologies that IBM Research has either enhanced or developed.  It combines software technologies from big data, content and predictive analytics, and industry specific software to make it work.

Watson includes several core pieces of technology that make it unique

So what is this secret sauce?  Watson understands natural language, generates and evaluates hypotheses, and adapts and learns.

First, Watson uses Natural Language Processing (NLP). NLP is a very broad and complex field, which has developed over the last ten to twenty years. The goals of NLP are to derive meaning from text. NLP generally makes use of linguistic concepts such as grammatical structures and parts of speech.  It breaks apart sentences and extracts information such as entities, concepts, and relationships.  IBM is using a set of annotators to extract information like symptoms, age, location, and so on.

So, NLP by itself is not new, however, Watson is processing vast amounts of this unstructured data quickly, using an architecture designed for this.

Second, Watson works by generating hypotheses which are potential answers to a question.  It is trained by feeding question and answer (Q/A) data into the system. In other words, it is shown representative questions and learns from the supplied answers.  This is called evidence based learning.  The goal is to generate a model that can produce a confidence score (think logistic regression with a bunch of attributes).  Watson would start with a generic statistical model and then look at the first Q/A and use that to tweak coefficients. As it gains more evidence it continues to tweak the coefficients until it can “say” confidence is high.  Training Watson is key since what is really happening is that the trainers are building statistical models that are scored.  At the end of the training, Watson has a system that has feature vectors and models so that eventually it can use the model to probabilistically score the answers.   The key here is something that Jeopardy! did not showcase – which is that it is not deterministic (i.e. using rules).  Watson is probabilistic and that makes it dynamic.

When Watson generates a hypothesis it then scores the hypothesis based on the evidence.   Its goal is to get the right answer for the right reason.  (So, theoretically, if there are 5 symptoms that must be positive for a certain disease and 4 that must be negative and Watson only has 4 of the 9 pieces of information, it could ask for more.) The hypothesis with the highest score is presented.   By the end the analysis, Watson is confident when it knows the answer and when it doesn’t know the answer.

Here’s an example.  Suppose you go in to see your doctor because you are not feeling well.  Specifically, you might have heart palpitations, fatigue, hair loss, and muscle weakness.  You decide to go see a doctor to determine if there is something wrong with your thyroid or if it is something else.  If your doctor has access to a Watson system then he could use it to help advise him regarding your diagnosis.  In this case, Watson would already have ingested and curated all of the information in books and journals associated with thyroid disease.  It also has the diagnosis and related information from other patients from this hospital and other doctors in the practice from the electronic medical records of prior cases that it has in its data banks.  Based on the first set of symptoms you might report it would generate a hypothesis along with probabilities associated with the hypothesis (i.e. 60% hyperthyroidism, 40% anxiety, etc.).  It might then ask for more information.  As it is fed this information, i.e. example patient history, Watson would continue to refine its hypothesis along with the probability of the hypothesis being correct.  After it is given all of the information and it iterates through it and presents the diagnosis with the highest confidence level, the physician would use this information to help assist him in making the diagnosis and developing a treatment plan.  If Watson doesn’t know the answer, it will state that it has does not have an answer or doesn’t have enough information to provide an answer.

IBM likens the process of training a Watson to teaching a child how to learn.  A child can read a book to learn.  However, he can also learn by a teacher asking questions and reinforcing the answers about that text.

Can I buy a Watson?

Watson will be offered in the cloud in an “as a service” model.  Since Watson is in its own class, let’s call this Watson as a Service (WaaS).  Since Watson’s knowledge is essentially built in tiers, the idea is that IBM will provide the basic core knowledge in a particular WaaS solution space, say all of the corpus about a particular subject – like diabetes – and then different users could build on this.

For example, in September IBM announced an agreement to create the first commercial applications of Watson with WellPoint – a health benefits company. Under the agreement, WellPoint will develop and launch Watson-based solutions to help improve patient care. IBM will develop the base Watson healthcare technology on which WellPoint’s solution will run.  Last month, Cedars-Sinai signed on with WellPoint to help develop an oncology solution using Watson.  Cedars-Sinai’s oncology experts will help develop recommendations on appropriate clinical content for the WellPoint health care solutions. They will assist in the evaluation and testing of these tools.  In fact, these oncologists will “enter hypothetical patient scenarios, evaluate the proposed treatment options generated by IBM Watson, and provide guidance on how to improve the content and utility of the treatment options provided to the physicians.”  Wow.

Moving forward, picture potentially large numbers of core knowledge bases that are trained and available for particular companies to build upon.  This would be available in a public cloud model and potentially a private one as well, but with IBM involvement.  This might include Watsons for law or financial planning or even politics (just kidding) – any area where there is a huge corpus of information that people need to wrap their arms around in order to make better decisions.

IBM is now working with its partners to figure out what the user interface for these Watsons- as a Service might look like.  Will Watson ask the questions?  Can end-users, say doctors, put in their own information and Watson will use it?  This remains to be seen.

Ready for Watson?

In the meantime, IBM recently rolled out its “Ready for Watson.”  The idea is that a move to Watson might not be a linear progression.  It depends on the business  problem that companies are looking to solve.  So IBM has tagged certain of its products as “ready” to be incorporated into a Watson solution.  IBM Content and Predictive Analytics for Healthcare is one example of this.  It combines IBM’s content analytics and predictive analytics solutions that are components of Watson.  Therefore, if a company used this solution it could migrate it to a Watson-as a Service deployment down the road.

So happy anniversary IBM Watson!  You have many people excited and some people a little bit scared.  For myself, I am excited to see where Watson is on its first anniversary and am looking forward to see what progress it has made on its second anniversary.

Follow

Get every new post delivered to your Inbox.

Join 1,189 other followers